RNA 革命性贡献:转录组学技术在癌症研究中的突破性应用
转录是细胞将 DNA 遗传信息转化为 RNA 分子的生物学过程。转录组学通过对 RNA 转录本进行定量和分类,可解析瞬时细胞状态的多维度特征,这一技术在癌症等恶性肿瘤研究中具有重要应用价值。
基础研究:基因谱早期洞察
肿瘤患者的基因特征已实现多模态研究,部分癌种的遗传学机制已获充分解析并形成研究共识。其中较为成功的案例是慢性髓性白血病的治疗,该疾病通常由 9 号和 22号染色体易位形成 BCR-ABL 酪氨酸激酶致癌基因。该致病染色体后被正式命名为费城染色体,这一发现开创了肿瘤精准医疗的新纪元。针对费城染色体易位开发的 BCR-ABL 酪氨酸激酶抑制剂伊马替尼(Imatinib),已成功将慢性髓性白血病的年死亡率从 10-20% 显著降至1-2%。1
提升诊疗精准度:突破原发病因局限性
划时代的 NCI MATCH 计划等临床试验里程碑研究已证实,针对特定基因突变的靶向药物在多种癌症类型中具有显著临床疗效,但存在例外情况,例如针对 BRAF V600E 突变的抑制剂单药对黑色素瘤等癌种疗效显著,但在结直肠癌中几乎无效。这为癌症治疗提供了全新思路:基于基因特征而非传统病因学分类的癌症治疗策略可能更具优势。2 该观点进一步得到 EGFR 突变靶向药物治疗肺癌和 HER2 靶向治疗乳腺癌等成功案例的支持。
目前,临床基因组分析工具(如 Oncotype Dx)和癌症特异性基因组检测系统(如乳腺癌检测系统 MammaPrint)的开发应用已成为临床标准,为医生提供了基于复发风险的治疗决策指导。这些工具在临床实践中不可或缺,显著降低患者风险并改善预后。此外,临床试验数据表明,采用伴随诊断或基于生物标志物的患者风险分层方法,可获得更优的治疗效果。3, 4, 5
转录组学在临床试验中的应用日益广泛
WINTHER、PROVABES、INFORM 和 PIPseq 等采用转录组学的临床试验表明,相比正常组织,肿瘤组织 RNA 分析在匹配靶向治疗方面具有重要价值。6, 7, 8, 9此外,将转录组学(RNA测序)与基因组图谱(DNA 测序)相结合尤为重要。研究表明,有些患者存在 RNA 介导的基因沉默,而这种 RNA 降解也可能成为靶向治疗的耐药机制。10, 11, 12 肿瘤的转录组特征、表观遗传改变、miRNA 表达及部分非编码 RNA,已被证实与癌症进展和转移具有临床相关性。11, 12, 13, 14, 15, 16
精准肿瘤学未来发展方向:多组学整合研究
随着癌症研究和治疗方法的发展,多组学整合正成为关键研究方向。协同获取转录组动态特征与基因组遗传信息,整合 RNA 与 DNA 分析见解,为肿瘤生物学提供了更全面的视角和理论依据,显著提升了治疗反应预测、耐药机制识别以及个体化治疗策略指导的能力。
无论是微量血液还是小活检样本,生物样本的质量和完整性都至关重要。基因组纯化试剂与自动化提取技术在此过程中发挥关键作用。从复杂临床样本中稳定提取高质量 RNA,是实现可靠下游分析、推动精准肿瘤学发展的基础前提。
- E. Jabbour and H. Kantarjian, “Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring,” Am J Hematol, vol. 95, no. 6, pp. 691–709, Jun. 2020, doi: 10.1002/AJH.25792.
- P. J. O’Dwyer et al., “The NCI-MATCH trial: lessons for precision oncology,” Nat Med, vol. 29, no. 6, pp. 1349–1357, Jun. 2023, doi: 10.1038/S41591-023-02379-4.
- M. Schwaederle et al., “Association of Biomarker-Based Treatment Strategies With Response Rates and Progression-Free Survival in Refractory Malignant Neoplasms: A Meta-analysis,” JAMA Oncol, vol. 2, no. 11, pp. 1452–1459, Nov. 2016, doi: 10.1001/JAMAONCOL.2016.2129.
- D. L. F. Jardim et al., “Impact of a Biomarker-Based Strategy on Oncology Drug Development: A Meta-Analysis of Clinical Trials Leading to FDA Approval,” JNCI: Journal of the National Cancer Institute, vol. 107, no. 11, p. 253, Nov. 2015, doi: 10.1093/JNCI/DJV253.
- M. Schwaederle et al., “Impact of precision medicine in diverse cancers: A meta-analysis of phase II clinical trials,” Journal of Clinical Oncology, vol. 33, no. 32, pp. 3817–3825, Nov. 2015, doi: 10.1200/JCO.2015.61.5997/SUPPL_FILE/DS_2015.615997.PDF.
- B. Weidenbusch et al., “Transcriptome based individualized therapy of refractory pediatric sarcomas: feasibility, tolerability and efficacy,” Oncotarget, vol. 9, no. 29, pp. 20747–20760, Apr. 2018, doi: 10.18632/ONCOTARGET.25087.
- B. C. Worst et al., “Next-generation personalised medicine for high-risk paediatric cancer patients – The INFORM pilot study,” Eur J Cancer, vol. 65, pp. 91–101, Sep. 2016, doi: 10.1016/J.EJCA.2016.06.009.
- J. A. Oberg et al., “Implementation of next generation sequencing into pediatric hematology-oncology practice: Moving beyond actionable alterations,” Genome Med, vol. 8, no. 1, p. 133, Dec. 2016, doi: 10.1186/s13073-016-0389-6.
- J. Rodon et al., “Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial,” Nat Med, vol. 25, no. 5, pp. 751–758, May 2019, doi: 10.1038/S41591-019-0424-4.
- J. J. Adashek et al., “RNAseq in addition to next generation sequencing in advanced genitourinary cancers reveals transcriptomic silencing of DNA mutations: Implications for resistance to targeted therapeutics.,” Journal of Clinical Oncology, vol. 37, no. 7_suppl, pp. 583–583, Mar. 2019, doi: 10.1200/JCO.2019.37.7_SUPPL.583.
- A. M. Tsimberidou et al., “Transcriptomics and solid tumors: The next frontier in precision cancer medicine,” Semin Cancer Biol, vol. 84, pp. 50–59, Sep. 2022, doi: 10.1016/J.SEMCANCER.2020.09.007.
- S. R. Lamichhane et al., “Prognostic role of microRNAs in human non-small-cell lung cancer: A systematic review and meta-analysis,” Dis Markers, vol. 2018, 2018, doi: 10.1155/2018/8309015.
- N. Yanaihara et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, Mar. 2006, doi: 10.1016/J.CCR.2006.01.025.
- J. A. Foekens et al., “Four miRNAs associated with aggressiveness of lymph node-negative, estrogen receptor-positive human breast cancer,” Proc Natl Acad Sci U S A, vol. 105, no. 35, pp. 13021–13026, Sep. 2008, doi: 10.1073/PNAS.0803304105/SUPPL_FILE/0803304105SI.PDF.
- L. Liu et al., “Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion,” Cancer Biomarkers, vol. 22, no. 2, pp. 283–299, 2018, doi: 10.3233/CBM-171011.
- C. H. Tsai et al., “Incorporation of long non-coding RNA expression profile in the 2017 ELN risk classification can improve prognostic prediction of acute myeloid leukemia patients,” EBioMedicine, vol. 40, pp. 240–250, Feb. 2019, doi: 10.1016/J.EBIOM.2019.01.022.
相关专题
作者简介
Patrick Paez 现任贝克曼库尔特生命科学公司医学与科学事务部经理,曾任职于细胞与基因治疗领域全球领先企业 Aldevron 。Patrick 于 2021 年获得弗吉尼亚联邦大学弗吉尼亚医学院免疫学博士学位。在梅西癌症中心攻读博士期间,任转化科学实验室组员,开发应用于肿瘤学一期临床试验的免疫治疗干预措施。